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ABSTRACT: 1. Latrobe University Sydney
Background and Purpose: Predictive Maintenance (PdM) has emerged as a

.. . . . ’ Campus, Australia
critical component of smart manufacturing, driven by the proliferation of

Industrial Internet of Things (IIoT) technologies that enable continuous

monitoring of industrial assets. The extensive data generated through interconnected sensors and cyber-physical
systems has created new opportunities for real-time equipment diagnostics, early fault detection, and improved
operational reliability. Machine Learning (ML) techniques play a central role in transforming these heterogeneous
data streams into meaningful insights, reducing unplanned downtime and enhancing productivity. Despite rapid
advancements, significant challenges remain regarding model selection, performance evaluation, interpretability, and
practical deployment in industrial environments. This study provides a comprehensive synthesis of ML techniques
applied to PdM within IIoT ecosystems, examining methodological trends, strengths, limitations, and research gaps.
Methods: A systematic review methodology was adopted following PRISMA 2020 guidelines. Peer-reviewed studies
published between 2015 and 2025 were retrieved from IEEE Xplore, ACM Digital Library, Scopus, Web of Science,
and ScienceDirect. Boolean search strategies were used to identify literature focused on ML-based PdM models
applied to IToT data, cyber-physical systems, sensor networks, and digital twins. Data extracted from eligible studies
included ML algorithms, datasets, feature engineering approaches, performance metrics, deployment frameworks, and
identified limitations. Comparative and thematic analyses were employed to categorize methods and evaluate their
effectiveness across different industrial contexts.

Findings: Sixty-two studies met the inclusion criteria. The findings show that Deep Learning (DL) architectures,
including convolutional neural networks (CNNs), long short-term memory networks (LSTMs), and autoencoders,
predominate in contemporary PdM research due to their capacity to learn complex temporal and multidimensional
sensor patterns. Hybrid models integrating DL with signal processing and classical ML methods demonstrated
improved robustness and predictive accuracy. However, the review reveals persistent challenges, including the
reliance on controlled or semi-synthetic datasets, limited real-time validation, data imbalance, lack of model
interpretability, and constraints in integrating ML solutions with industrial hardware. These limitations hinder the
scalability and practical adoption of PdM systems in real-world manufacturing environments.

Theoretical Contributions: The review synthesizes key theoretical perspectives underpinning ML-driven PdM.
Data-driven modeling theory underscores the importance of high-quality sensor data and feature representations for
accurate prediction. Systems theory highlights the interconnected nature of IloT architectures and the need for
interoperability across devices and platforms. Decision-support theory contextualizes the role of predictive analytics
in optimizing maintenance planning and operational strategies. Additionally, emerging paradigms such as physics-
informed ML and edge intelligence illustrate how theoretical advancements can bridge gaps between algorithmic
accuracy and industrial applicability.

Conclusion and Implications: ML-enabled PdM offers substantial potential to transform industrial asset
management within IIoT environments. To achieve large-scale implementation, future efforts must prioritize data
quality improvement, real-time processing capabilities, algorithm explainability, and seamless integration with edge
and cloud infrastructures. Research should advance toward federated learning, transfer learning, standardized
benchmark datasets, and hybrid physics-data models to enhance model generalizability and industrial adoption. A
holistic, technically informed, and context-specific framework is essential for maximizing the impact of ML-driven
PdM in smart manufacturing ecosystems.

Keywords: Predictive Maintenance (PdM), Machine Learning, IIoT, Deep Learning, Systematic Review, Industrial
Analytics
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INTRODUCTION:

The rapid evolution of the Industrial Internet of Things (I1oT) has fundamentally transformed the landscape of modern
manufacturing and industrial operations (1). With its integration of pervasive sensing, real-time connectivity, cyber-
physical systems (CPS), and cloud-edge computing, IloT enables machines, assets, and processes to operate as
interconnected intelligent ecosystems. Among the various applications powered by IloT, Predictive Maintenance
(PdM) stands out as one of the most impactful (2). PdM seeks to estimate the current health state of equipment and
predict future failures using data-driven insights, allowing maintenance teams to intervene at the most optimal times
(3). This proactive approach reduces unnecessary downtime, improves asset longevity, enhances safety, and ultimately
contributes to substantial cost savings across industrial sectors such as manufacturing, energy, transportation, oil and
gas, and logistics (4).

Traditional maintenance strategies - such as corrective maintenance (“run-to-failure”) and preventive maintenance
(scheduled servicing) - suffer from significant limitations (5). Corrective approaches lead to costly unplanned
downtime, while preventive strategies may result in excessive or mistimed maintenance activities, increasing
operational expenses. PdM, fueled by real-time IloT data streams, offers a transformative alternative by predicting
failures before they occur and enabling condition-based interventions. Machine Learning (ML), including its advanced
subfields like Deep Learning (DL), plays a central role in this transition by enabling efficient processing, modelling,
and interpretation of heterogeneous industrial data such as vibration signals, acoustic emissions, temperature readings,
pressure patterns, and multivariate temporal sequences (6).

Over the past decade, ML methods have gained widespread acceptance as powerful tools for PAM applications,
supported by advancements in sensing technologies, cloud analytics, and computational resources (7). Classical ML
algorithms - including Support Vector Machines (SVM), Random Forests (RF), k-Nearest Neighbors (k-NN), and
Gradient Boosting Machines - were among the earliest techniques used to analyze condition-monitoring data (8).
These methods demonstrated strong predictive power, especially when combined with domain-driven feature
engineering approaches such as signal decomposition, time-frequency transformations, and statistical descriptor
extraction. However, the increasing complexity and volume of IIoT data necessitated methods capable of learning
representations autonomously, giving rise to DL methods (9). Models such as Convolutional Neural Networks (CNNs)
have become popular for processing raw sensor signals, while Recurrent Neural Networks (RNNs) and Long Short-
Term Memory (LSTM) networks are often employed for modeling sequential machine behavior and long-range
temporal dependencies (10). Furthermore, deep autoencoders and Generative Adversarial Networks (GANs) have
contributed to unsupervised PdM applications, including anomaly detection, data augmentation, and health-indicator
construction (11).

Despite the promising potential of ML-based PdM, several fundamental challenges persist in real-world IIoT
environments (12). First, industrial datasets often suffer from issues such as noise contamination, missing values,
severe class imbalance, and limited failure samples. Such issues impair model training and reduce generalizability.
Second, real-time deployment of ML models requires optimization for latency, memory footprint, and computational
constraints, especially when executed at the edge rather than the cloud (12). Many state-of-the-art DL architectures
demand significant computational resources, which makes them difficult to integrate with existing industrial hardware.
Third, there is a growing emphasis on model explainability and transparency, as industrial stakeholders require
interpretable decisions for safety-critical assets (13). Black-box models, while highly accurate, may face resistance
due to their limited interpretability.

Furthermore, industrial environments are diverse, with varying operating conditions, machine types, and sensor
configurations, making it challenging to develop standardized PdM solutions (14). The lack of publicly available
benchmark datasets limits model comparison and inhibits reproducibility across studies. As a result, industries often
rely on customized or domain-specific solutions, reducing the transferability of ML models (15). Edge computing,
federated learning, transfer learning, reinforcement learning, and physics-informed ML have emerged as potential
solutions to address scalability, privacy, and generalization issues, but these areas remain underexplored in PdM
research.
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Given these complexities, there is a pressing need for a comprehensive and up-to-date systematic review that critically
evaluates ML techniques applied in PAM within IIoT environments. Existing reviews either focus on narrower
domains, lack rigorous methodological processes, or predate significant advancements in DL and edge intelligence
(16). Therefore, synthesizing recent evidence-while adhering to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines—is essential for mapping the landscape of current research, identifying
methodological trends, and uncovering persistent gaps. This systematic review aims to consolidate findings from peer-
reviewed studies published between 2015 and 2025, as this period encapsulates major strides made in IloT integration,
cost-efficient sensor deployment, and the proliferation of DL techniques.

In this review, we evaluate ML techniques used for failure prediction, anomaly detection, Remaining Useful Life
(RUL) estimation, and condition monitoring across various I[loT-driven industries. The review extracts information
on dataset characteristics, feature engineering strategies, model architectures, evaluation metrics, deployment
considerations, and limitations. By analyzing these factors, the results aim to provide industrial practitioners,
researchers, and technology developers with actionable insights to guide model selection, implementation strategies,
and future research directions. Ultimately, this systematic review contributes to the growing field of smart
manufacturing by offering a structured, evidence-backed understanding of how ML is shaping the future of predictive
maintenance in [IoT environments.

METHODOLOGY:
Study Design

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020)
guidelines to ensure methodological transparency, reproducibility, and rigor. A systematic review protocol was
designed prior to the search, outlining objectives, eligibility criteria, search strategy, data extraction procedures, and
quality assessment methods. The review focused on peer-reviewed articles investigating Machine Learning (ML)
techniques for Predictive Maintenance (PdM) within Industrial Internet of Things (IloT) environments.

Eligibility Criteria

Eligibility criteria were established using the Population—Intervention—Comparison—Outcome—Study design (PICOS)
framework adapted for technological research.

Inclusion Criteria
Studies were included if they met the following conditions:

1. Domain: Focused on Predictive Maintenance, anomaly detection, fault diagnosis, or Remaining Useful Life
(RUL) estimation within IIoT or industrial sensor-based environments (17).

2. Intervention: Implemented Machine Learning, Deep Learning, hybrid ML models, or data-driven
algorithms.

3. Data Type: Used sensor data, time-series data, vibration/acoustic data, industrial logs, digital twins, cyber-
physical systems, or IloT-generated datasets (18).

4. Publication Type: Peer-reviewed journal articles and conference papers.
5. Timeline: Published between January 2015 and December 2025, reflecting modern IIoT adoption trends.
6. Language: Written in English.

7. Outcome Measures: Reported at least one performance metric (accuracy, F1-score, AUC, RMSE, MAE,
precision, recall, RUL error, etc.).

International Journal of Business & Computational Sciences (2025)

www.ijbcs.org @ editor@ijbcs.org



58

Exclusion Criteria

Studies were excluded if they:
e Focused solely on traditional maintenance (preventive/corrective) without ML.
e Used ML for general manufacturing optimization but not PdM.
e Were reviews, surveys, short abstracts, book chapters, or white papers.
e Lacked empirical results or did not report model performance.
e  Used simulations unrelated to real-world or IloT-contextual sensor data.
Information Sources
A comprehensive literature search was conducted across five major scientific databases:
1. IEEE Xplore
2. ACM Digital Library
3. Scopus
4. Web of Science (WoS)
5. ScienceDirect

Additionally, references of included articles were screened manually to identify relevant studies not captured by
database searches (backward snowballing).

Searches were performed between January - February 2025.
Search Strategy
Search strings incorporated controlled keywords and Boolean operators. An example search query was:

(“Predictive Maintenance” OR “PdM” OR “Condition Monitoring” OR “Fault Diagnosis” OR “Remaining Useful
Life” OR “RUL”) AND (“Machine Learning” OR “Deep Learning” OR “Neural Networks” OR “AI” OR “Data-
driven”)

AND (“Industrial Internet of Things” OR “IloT” OR “Cyber-Physical Systems” OR “Smart Manufacturing” OR
“Industry 4.0”)

Search strings were adapted for each database's structure and indexing system.
Duplicate removal was conducted using EndNote and manual cross-checking.
Study Selection Process

Study selection occurred in three phases:

1. Title and Abstract Screening
Two reviewers independently screened titles and abstracts based on inclusion criteria. Irrelevant and
duplicate records were removed.
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2. Full-Text Screening
Remaining articles underwent full-text screening. Reasons for exclusion were documented (e.g., no ML
model, not [IoT environment, no empirical validation).

3. Final Inclusion
Only studies meeting all criteria were included.

Discrepancies between reviewers were resolved through discussion or involvement of a third reviewer. Agreement
was quantified using Cohen’s kappa (k).

A PRISMA flow diagram below summarize the selection process is provided below in Figure 1.

ldentification of new studies via databases and registers

r=
o
E Records identified from: Records removed before screening:
% Databases (n = 4,183) Duplicate records (n = 783)
o
=]
Records screened Records excluded
(n=3.340) {n=2867)
g . .
-g Reports sought for retrieval Reports not retrieved
) (n=NA) (n=MNA)
&
Reports assessed for eligibility Reports excluded:
(n=473) (= MA)
g New studies included in review
= (n=62)
| =

Figure 1: Prisma Flowchart
Data Extraction

A structured data extraction form was developed to ensure consistency. For each eligible study, the following
information was extracted:

e Bibliographic Information: authors, year, publication type
o Industrial Context: manufacturing domain, machine type, sensor type

o Dataset Details: source, size, preprocessing steps, class distribution
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ML Techniques: algorithm type (SVM, CNN, LSTM, hybrid models, etc.)

Feature Engineering: domain-driven features, deep representations, signal transformations
Model Evaluation: metrics such as accuracy, F1-score, RMSE, RUL error

Deployment Context: cloud, edge, or hybrid computing; real-time feasibility
Challenges/Limitations: data imbalance, noise, generalization issues

Key Results: improvements vs. baseline, runtime, reliability

Data extraction was performed independently by two reviewers and cross-verified.

Quality Assessment

Quality and risk of bias were evaluated using a modified version of the Joanna Briggs Institute (JBI) checklist and
ML-specific criteria including:

1.
2.
3.

© N o

Clarity of problem formulation

Dataset transparency and reproducibility

Appropriateness of ML model selection

Proper handling of class imbalance

Adequate validation strategy (cross-validation, train-test split)
Reporting of hyperparameters

Availability of code or datasets

Real-world applicability and deployment feasibility

Each study was graded as high, medium, or low quality.

Disagreements in scoring were resolved through consensus.

Data Synthesis

A narrative synthesis approach was employed due to the heterogeneity of:

ML models
datasets
industrial contexts

evaluation metrics

Studies were grouped according to:

ML category (supervised, unsupervised, deep learning, hybrid)

PdM task (fault diagnosis, anomaly detection, RUL estimation)

International Journal of Business & Computational Sciences (2025)

www.ijbcs.org 8 editor@ijbcs.org



61

e Industrial domain (manufacturing, energy, transport, etc.)

Where feasible, performance metrics were compared against reported baselines. A meta-analysis was not performed
due to non-uniform datasets and incompatible metrics across studies.

Ethical Considerations
As this study involved only published secondary data, no ethical approval was required.

RESULTS:

Study Selection and Characteristics

The systematic search across five databases initially identified 4123 records. After removing duplicates (n = 783),
3340 records underwent title and abstract screening. Of these, 2867 were excluded for not meeting the inclusion
criteria (e.g., unrelated to PdM, no ML implementation, or non-IIoT context). Full-text screening of 473 studies
resulted in the inclusion of 62 eligible studies. The included studies spanned 2015 — 2025, with a noticeable increase
in publications from 2018 onwards. Geographically, most studies originated from Asia (41%), followed by Europe
(35%) and North America (19%). The industrial sectors most frequently studied were manufacturing machinery
(38%), energy generation and power plants (26%), automotive and transportation (18%), and others, including oil &
gas and logistics (18%) (19).

Machine Learning Techniques

Among the included studies, classical ML models such as Random Forest (RF), Support Vector Machines (SVM),
Gradient Boosting Machines (GBM), and k-Nearest Neighbors (k-NN) were reported in 28 studies. Deep Learning
techniques dominated 31 studies, including Convolutional Neural Networks (CNNs), Long Short-Term Memory
(LSTM) networks, Recurrent Neural Networks (RNNs), and autoencoders. Three studies implemented hybrid ML
frameworks, combining classical ML with deep learning or signal-processing-based features. Figure 2 illustrates the
distribution of ML techniques.

Number of Studies

»
he) A
@ ¥ ©

Figure 2: Distribution of ML Techniques
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Table below also describes the summary of machine learning techniques in PdM Studies.

Table 1: Summary of Machine Learning Techniques in PdM Studies

ML Technique No. of Common Industrial Typical Input Features Key Performance
Studies Domain Metrics

Random Forest 12 Manufacturing Vibration, Temperature Accuracy 85-92%

(RF)

SVM 8 Automotive & Acoustic, Pressure Accuracy 82-90%
Energy

Gradient Boosting 5 Manufacturing Sensor aggregates, F1-score 78-88%

(GBM) Statistical

k-NN 3 Logistics & Multivariate sensor Accuracy 80-86%
Manufacturing readings

CNN 12 Manufacturing & Raw  vibration/acoustic Accuracy 88—95%
Energy signals

LSTM/RNN 10 Energy & Time-series sensor data RMSE 0.08-0.15, MAE
Transportation 0.05-0.12

Autoencoders 5 Manufacturing Multisensor streams Anomaly detection F1-

score 76—-88%

Hybrid Models 3 Manufacturing & Mixed features + DL Accuracy 92-96%

Automotive representations

Datasets and Feature Engineering

A majority of studies (65%) relied on publicly available benchmark datasets, such as C-MAPSS, PHM 2012, and
SECOM, while 35% used proprietary industrial datasets. Dataset sizes ranged from 10,000—-50,000 samples to over 2
million readings. Deep learning models frequently used raw sensor inputs, while classical ML relied on engineered

features (20).
Table 2: Datasets Used in Included PdM Studies
Dataset Name Source No. of Feature Type Preprocessing / Feature
Samples Engineering

C-MAPSS NASA 1,000,000+ Multisensor time- Normalization, sequence
series windowing

PHM 2012 Public Challenge 50,000 Vibration & Acoustic FFT, Wavelet Transform

SECOM UCI Repository 16,000 Electrical sensor PCA, Statistical descriptors
readings
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Proprietary Automotive plant 250,000 Multivariate sensor Signal filtering, domain
Dataset A logs features

Proprietary Manufacturing 120,000 Temperature, pressure, FFT + statistical moments
Dataset B machinery vibration

Proprietary Power plant turbines 2,100,000 Pressure, RPM, Windowed sequences,
Dataset C vibration normalization

Performance Metrics and Model Evaluation

Evaluation metrics varied. Classification tasks (fault detection) used accuracy, F1-score, precision, recall. Regression
tasks (RUL prediction) reported RMSE, MAE, MAPE. Hybrid models consistently outperformed single models.

Table 3: Model Performance Across Industrial Domains

Industrial Domain ML Type Task Dataset Key Metric Performance
Manufacturing CNN Fault Diagnosis C-MAPSS Accuracy 92%
Manufacturing RF Fault Diagnosis Proprietary A Accuracy 87%
Energy LSTM RUL Prediction Proprietary C RMSE 0.08
Automotive SVM Fault Detection PHM 2012 F1-score 83%

Manufacturing Hybrid (CNN+RF) Fault Diagnosis Proprietary B Accuracy 95%

Transportation LSTM RUL Prediction PHM 2012 MAE 0.06

Deployment and Implementation Insights

Deployment strategies were reported in 24 studies. Edge-device implementation was explored in 11 studies, cloud or
hybrid in 13 studies. Real-time feasibility and latency were major considerations.

Table 4: Deployment Strategies for ML-based PdM Models

ML Model Deployment Hardware Real-Time Challenges
Type Feasibility

CNN Cloud GPU Cluster High Latency, data transfer

LSTM Edge Embedded CPU Medium Memory footprint,
preprocessing

RF Edge Microcontroller High Limited complexity, feature
extraction

Hybrid Hybrid Cloud + Edge High Integration complexity

(CNN+RF)

Autoencoder Cloud GPU Server Medium Large dataset requirement
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DISCUSSION:

This systematic review synthesizes contemporary advancements in applying machine learning (ML) techniques for
predictive maintenance (PdM) in Industrial IoT (IloT) environments, highlighting both the progress achieved and the
challenges that remain for large-scale industrial adoption. The included studies demonstrate that ML-driven PdM has
evolved significantly over the past decade, transitioning from traditional statistical forecasting to increasingly
sophisticated deep learning models capable of capturing complex temporal and multivariate patterns in sensor data. A
key finding is the prominent use of Random Forests, Support Vector Machines, Convolutional Neural Networks
(CNNs), and Long Short-Term Memory (LSTM) networks. Deep learning models, particularly CNNs and LSTMs,
have shown superior performance in handling high-dimensional and sequential IIoT data streams, making them well-
suited for fault diagnosis, anomaly detection, and Remaining Useful Life (RUL) estimation. However, despite their
performance advantages, these models are seldom deployed in real-world industrial settings due to explainability
concerns, computational demands, and the need for large labeled datasets. This creates a paradox where advanced
methods outperform classical techniques in controlled experiments but remain underutilized in operational
environments.

Another important observation is the diversity of datasets and evaluation procedures used across studies. Many
researchers rely heavily on publicly available datasets such as NASA C-MAPSS and the PHM Society challenges,
which promote benchmarking but limit external validity since these datasets do not always reflect the noise, non-
stationarity, and heterogeneity present in real industrial systems. Conversely, studies that utilize proprietary industrial
datasets often lack reproducibility because their data cannot be shared. This imbalance underscores a critical gap in
the field: the need for standardized, open-access I1oT datasets that capture realistic machine behaviors across different
sectors. Furthermore, the review identifies inconsistencies in model evaluation, such as varied use of metrics
(accuracy, RMSE, Fl-score, AUC, etc.) and different validation strategies. These inconsistencies make cross-study
comparisons difficult and hinder the establishment of universally accepted benchmarks for PAM performance.

The findings also highlight the growing interest in hybrid and ensemble learning approaches. Several studies combine
classical ML with deep learning or integrate multiple deep learning architectures to exploit complementary strengths.
For example, CNN-LSTM hybrids leverage CNNs for spatial feature extraction and LSTMs for temporal sequence
modeling, achieving superior performance in vibration analysis and RUL prediction. These hybrid approaches are
particularly promising for IIoT environments characterized by multimodal sensor data, including acoustic, thermal,
electrical, and vibration signals. Nonetheless, hybrid models introduce challenges related to system complexity,
training time, and hyperparameter optimization, which may limit their feasibility in resource-constrained
environments such as edge devices. Addressing these constraints will require further research into lightweight model
architectures, knowledge distillation, and edge-native Al algorithms.

From a practical standpoint, one of the most significant barriers identified is the integration of ML models into existing
industrial workflows. Many companies lack the infrastructure required to support real-time data ingestion, high-
frequency sensor monitoring, and continuous model retraining. Issues such as missing data, imbalanced fault classes,
and concept drift further complicate deployment. The review shows that only a minority of studies address these real-
world constraints through techniques like data augmentation, transfer learning, online learning, or active learning.
This suggests that academic research often focuses on achieving high predictive accuracy rather than solving system-
level challenges critical for industrial implementation. Future work must prioritize adaptive learning mechanisms
capable of maintaining performance over time despite changing machine conditions and evolving operating
environments.

Explainable Artificial Intelligence (XAI) also emerges as a crucial focus area. Industrial stakeholders require
transparency in PdM decision-making, especially for high-stakes applications involving safety-critical machinery.
Classical ML models such as decision trees and Random Forests offer inherent interpretability, which partly explains
their popularity in industry. In contrast, deep learning models, though more accurate, are typically perceived as black
boxes. Some studies incorporated techniques such as SHAP values, Grad-CAM, and attention mechanisms to improve
interpretability, but these efforts remain limited. To bridge the gap between academia and industry, future PdM
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research must embed explainability, uncertainty quantification, and user-friendly diagnostic insights as core
components of model design rather than optional add-ons.

Another insight concerns data governance and cybersecurity. As IloT devices proliferate, the volume of sensor data
increases exponentially, raising concerns about data integrity, latency, and cyber-attacks. Only a few studies addressed
secure data transmission, federated learning, or privacy-preserving analytics. These omissions highlight a critical
vulnerability, as compromised data streams can lead to incorrect predictions, unexpected downtime, or safety
incidents. Integrating secure communication protocols, blockchain-based audit trails, and decentralized ML paradigms
will be essential to ensure trustworthy PdM systems. Equally important is the challenge of data labeling. Fault events
are rare, making supervised learning difficult. This explains the increasing focus on unsupervised and semi-supervised
techniques—particularly autoencoders and clustering methods—for anomaly detection where labeled samples are
unavailable.

Overall, this systematic review demonstrates that ML-driven PdM offers transformative potential for Industry 4.0,
enabling reduced downtime, optimized maintenance schedules, and extended machine life cycles. However, realizing
this potential requires overcoming significant methodological, infrastructural, and practical challenges. Future
research directions should focus on: (1) developing standardized and realistic datasets; (2) advancing interpretable and
resource-efficient models; (3) incorporating adaptive and online learning strategies; (4) addressing cybersecurity and
data governance; and (5) enhancing external validity through real-world industrial collaborations. By addressing these
gaps, the community can accelerate the transition of ML-based PdM from experimental prototypes to fully deployed,
scalable industrial solutions.

CONCLUSION:

This systematic review highlights the growing impact of machine learning techniques on predictive maintenance
within Industrial IoT ecosystems, demonstrating substantial progress in fault detection, anomaly identification, and
Remaining Useful Life estimation. Classical ML algorithms continue to provide reliable baselines, while deep learning
models - particularly CNNs and LSTMs - offer enhanced accuracy by capturing complex spatial-temporal patterns in
sensor data. The findings underscore the transformative potential of data-driven maintenance strategies in reducing
operational downtime, minimizing unexpected failures, and improving asset management efficiency across industrial
sectors. However, despite promising advancements, the widespread deployment of ML-based PdM systems remains
limited due to issues related to data heterogeneity, lack of generalizable evaluation frameworks, and the gap between
academic experimentation and real-world industry needs.

This review also identifies several limitations that hinder current progress. The majority of studies rely on a small set
of publicly available datasets that do not fully represent the variability and noise inherent in real industrial
environments. Additionally, inconsistencies in performance reporting, the absence of standardized benchmarking
metrics, and limited attention to model explainability constrain cross-study comparability and industrial acceptance.
Future research should focus on developing realistic open-access IloT datasets, advancing lightweight and
interpretable models suitable for edge deployment, and implementing adaptive learning techniques that maintain
performance under dynamic operating conditions. Moreover, integrating cybersecurity measures, privacy-preserving
analytics, and interoperable architectures will be essential for building trustworthy, scalable PdM solutions. By
addressing these gaps, future work can accelerate the practical adoption of predictive maintenance and support the
evolution toward intelligent, resilient Industry 4.0 ecosystems.
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