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ABSTRACT: 
Background and Purpose: Predictive Maintenance (PdM) has emerged as a 

critical component of smart manufacturing, driven by the proliferation of 

Industrial Internet of Things (IIoT) technologies that enable continuous 

monitoring of industrial assets. The extensive data generated through interconnected sensors and cyber-physical 

systems has created new opportunities for real-time equipment diagnostics, early fault detection, and improved 

operational reliability. Machine Learning (ML) techniques play a central role in transforming these heterogeneous 

data streams into meaningful insights, reducing unplanned downtime and enhancing productivity. Despite rapid 

advancements, significant challenges remain regarding model selection, performance evaluation, interpretability, and 

practical deployment in industrial environments. This study provides a comprehensive synthesis of ML techniques 

applied to PdM within IIoT ecosystems, examining methodological trends, strengths, limitations, and research gaps. 

Methods: A systematic review methodology was adopted following PRISMA 2020 guidelines. Peer-reviewed studies 

published between 2015 and 2025 were retrieved from IEEE Xplore, ACM Digital Library, Scopus, Web of Science, 

and ScienceDirect. Boolean search strategies were used to identify literature focused on ML-based PdM models 

applied to IIoT data, cyber-physical systems, sensor networks, and digital twins. Data extracted from eligible studies 

included ML algorithms, datasets, feature engineering approaches, performance metrics, deployment frameworks, and 

identified limitations. Comparative and thematic analyses were employed to categorize methods and evaluate their 

effectiveness across different industrial contexts. 

Findings: Sixty-two studies met the inclusion criteria. The findings show that Deep Learning (DL) architectures, 

including convolutional neural networks (CNNs), long short-term memory networks (LSTMs), and autoencoders, 

predominate in contemporary PdM research due to their capacity to learn complex temporal and multidimensional 

sensor patterns. Hybrid models integrating DL with signal processing and classical ML methods demonstrated 

improved robustness and predictive accuracy. However, the review reveals persistent challenges, including the 

reliance on controlled or semi-synthetic datasets, limited real-time validation, data imbalance, lack of model 

interpretability, and constraints in integrating ML solutions with industrial hardware. These limitations hinder the 

scalability and practical adoption of PdM systems in real-world manufacturing environments. 

Theoretical Contributions: The review synthesizes key theoretical perspectives underpinning ML-driven PdM. 

Data-driven modeling theory underscores the importance of high-quality sensor data and feature representations for 

accurate prediction. Systems theory highlights the interconnected nature of IIoT architectures and the need for 

interoperability across devices and platforms. Decision-support theory contextualizes the role of predictive analytics 

in optimizing maintenance planning and operational strategies. Additionally, emerging paradigms such as physics-

informed ML and edge intelligence illustrate how theoretical advancements can bridge gaps between algorithmic 

accuracy and industrial applicability. 

Conclusion and Implications: ML-enabled PdM offers substantial potential to transform industrial asset 

management within IIoT environments. To achieve large-scale implementation, future efforts must prioritize data 

quality improvement, real-time processing capabilities, algorithm explainability, and seamless integration with edge 

and cloud infrastructures. Research should advance toward federated learning, transfer learning, standardized 

benchmark datasets, and hybrid physics-data models to enhance model generalizability and industrial adoption. A 

holistic, technically informed, and context-specific framework is essential for maximizing the impact of ML-driven 

PdM in smart manufacturing ecosystems. 
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INTRODUCTION: 
The rapid evolution of the Industrial Internet of Things (IIoT) has fundamentally transformed the landscape of modern 

manufacturing and industrial operations (1). With its integration of pervasive sensing, real-time connectivity, cyber-

physical systems (CPS), and cloud-edge computing, IIoT enables machines, assets, and processes to operate as 

interconnected intelligent ecosystems. Among the various applications powered by IIoT, Predictive Maintenance 

(PdM) stands out as one of the most impactful (2). PdM seeks to estimate the current health state of equipment and 

predict future failures using data-driven insights, allowing maintenance teams to intervene at the most optimal times 

(3). This proactive approach reduces unnecessary downtime, improves asset longevity, enhances safety, and ultimately 

contributes to substantial cost savings across industrial sectors such as manufacturing, energy, transportation, oil and 

gas, and logistics (4). 

Traditional maintenance strategies - such as corrective maintenance (“run-to-failure”) and preventive maintenance 

(scheduled servicing) - suffer from significant limitations (5). Corrective approaches lead to costly unplanned 

downtime, while preventive strategies may result in excessive or mistimed maintenance activities, increasing 

operational expenses. PdM, fueled by real-time IIoT data streams, offers a transformative alternative by predicting 

failures before they occur and enabling condition-based interventions. Machine Learning (ML), including its advanced 

subfields like Deep Learning (DL), plays a central role in this transition by enabling efficient processing, modelling, 

and interpretation of heterogeneous industrial data such as vibration signals, acoustic emissions, temperature readings, 

pressure patterns, and multivariate temporal sequences (6). 

Over the past decade, ML methods have gained widespread acceptance as powerful tools for PdM applications, 

supported by advancements in sensing technologies, cloud analytics, and computational resources (7). Classical ML 

algorithms - including Support Vector Machines (SVM), Random Forests (RF), k-Nearest Neighbors (k-NN), and 

Gradient Boosting Machines - were among the earliest techniques used to analyze condition-monitoring data (8). 

These methods demonstrated strong predictive power, especially when combined with domain-driven feature 

engineering approaches such as signal decomposition, time-frequency transformations, and statistical descriptor 

extraction. However, the increasing complexity and volume of IIoT data necessitated methods capable of learning 

representations autonomously, giving rise to DL methods (9). Models such as Convolutional Neural Networks (CNNs) 

have become popular for processing raw sensor signals, while Recurrent Neural Networks (RNNs) and Long Short-

Term Memory (LSTM) networks are often employed for modeling sequential machine behavior and long-range 

temporal dependencies (10). Furthermore, deep autoencoders and Generative Adversarial Networks (GANs) have 

contributed to unsupervised PdM applications, including anomaly detection, data augmentation, and health-indicator 

construction (11). 

Despite the promising potential of ML-based PdM, several fundamental challenges persist in real-world IIoT 

environments (12). First, industrial datasets often suffer from issues such as noise contamination, missing values, 

severe class imbalance, and limited failure samples. Such issues impair model training and reduce generalizability. 

Second, real-time deployment of ML models requires optimization for latency, memory footprint, and computational 

constraints, especially when executed at the edge rather than the cloud (12). Many state-of-the-art DL architectures 

demand significant computational resources, which makes them difficult to integrate with existing industrial hardware. 

Third, there is a growing emphasis on model explainability and transparency, as industrial stakeholders require 

interpretable decisions for safety-critical assets (13). Black-box models, while highly accurate, may face resistance 

due to their limited interpretability. 

Furthermore, industrial environments are diverse, with varying operating conditions, machine types, and sensor 

configurations, making it challenging to develop standardized PdM solutions (14). The lack of publicly available 

benchmark datasets limits model comparison and inhibits reproducibility across studies. As a result, industries often 

rely on customized or domain-specific solutions, reducing the transferability of ML models (15). Edge computing, 

federated learning, transfer learning, reinforcement learning, and physics-informed ML have emerged as potential 

solutions to address scalability, privacy, and generalization issues, but these areas remain underexplored in PdM 

research. 
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Given these complexities, there is a pressing need for a comprehensive and up-to-date systematic review that critically 

evaluates ML techniques applied in PdM within IIoT environments. Existing reviews either focus on narrower 

domains, lack rigorous methodological processes, or predate significant advancements in DL and edge intelligence 

(16). Therefore, synthesizing recent evidence-while adhering to the Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) guidelines—is essential for mapping the landscape of current research, identifying 

methodological trends, and uncovering persistent gaps. This systematic review aims to consolidate findings from peer-

reviewed studies published between 2015 and 2025, as this period encapsulates major strides made in IIoT integration, 

cost-efficient sensor deployment, and the proliferation of DL techniques. 

In this review, we evaluate ML techniques used for failure prediction, anomaly detection, Remaining Useful Life 

(RUL) estimation, and condition monitoring across various IIoT-driven industries. The review extracts information 

on dataset characteristics, feature engineering strategies, model architectures, evaluation metrics, deployment 

considerations, and limitations. By analyzing these factors, the results aim to provide industrial practitioners, 

researchers, and technology developers with actionable insights to guide model selection, implementation strategies, 

and future research directions. Ultimately, this systematic review contributes to the growing field of smart 

manufacturing by offering a structured, evidence-backed understanding of how ML is shaping the future of predictive 

maintenance in IIoT environments. 

METHODOLOGY: 
Study Design 

This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) 

guidelines to ensure methodological transparency, reproducibility, and rigor. A systematic review protocol was 

designed prior to the search, outlining objectives, eligibility criteria, search strategy, data extraction procedures, and 

quality assessment methods. The review focused on peer-reviewed articles investigating Machine Learning (ML) 

techniques for Predictive Maintenance (PdM) within Industrial Internet of Things (IIoT) environments. 

Eligibility Criteria 

Eligibility criteria were established using the Population–Intervention–Comparison–Outcome–Study design (PICOS) 

framework adapted for technological research. 

Inclusion Criteria 

Studies were included if they met the following conditions: 

1. Domain: Focused on Predictive Maintenance, anomaly detection, fault diagnosis, or Remaining Useful Life 

(RUL) estimation within IIoT or industrial sensor-based environments (17). 

2. Intervention: Implemented Machine Learning, Deep Learning, hybrid ML models, or data-driven 

algorithms. 

3. Data Type: Used sensor data, time-series data, vibration/acoustic data, industrial logs, digital twins, cyber-

physical systems, or IIoT-generated datasets (18). 

4. Publication Type: Peer-reviewed journal articles and conference papers. 

5. Timeline: Published between January 2015 and December 2025, reflecting modern IIoT adoption trends. 

6. Language: Written in English. 

7. Outcome Measures: Reported at least one performance metric (accuracy, F1-score, AUC, RMSE, MAE, 

precision, recall, RUL error, etc.). 
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Exclusion Criteria 

Studies were excluded if they: 

• Focused solely on traditional maintenance (preventive/corrective) without ML. 

• Used ML for general manufacturing optimization but not PdM. 

• Were reviews, surveys, short abstracts, book chapters, or white papers. 

• Lacked empirical results or did not report model performance. 

• Used simulations unrelated to real-world or IIoT-contextual sensor data. 

Information Sources 

A comprehensive literature search was conducted across five major scientific databases: 

1. IEEE Xplore 

2. ACM Digital Library 

3. Scopus 

4. Web of Science (WoS) 

5. ScienceDirect 

Additionally, references of included articles were screened manually to identify relevant studies not captured by 

database searches (backward snowballing). 

Searches were performed between January - February 2025. 

Search Strategy 

Search strings incorporated controlled keywords and Boolean operators. An example search query was: 

(“Predictive Maintenance” OR “PdM” OR “Condition Monitoring” OR “Fault Diagnosis” OR “Remaining Useful 

Life” OR “RUL”) AND (“Machine Learning” OR “Deep Learning” OR “Neural Networks” OR “AI” OR “Data-

driven”) 

AND (“Industrial Internet of Things” OR “IIoT” OR “Cyber-Physical Systems” OR “Smart Manufacturing” OR 

“Industry 4.0”) 

Search strings were adapted for each database's structure and indexing system. 

Duplicate removal was conducted using EndNote and manual cross-checking. 

Study Selection Process 

Study selection occurred in three phases: 

1. Title and Abstract Screening 

Two reviewers independently screened titles and abstracts based on inclusion criteria. Irrelevant and 

duplicate records were removed. 
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2. Full-Text Screening 

Remaining articles underwent full-text screening. Reasons for exclusion were documented (e.g., no ML 

model, not IIoT environment, no empirical validation). 

3. Final Inclusion 

Only studies meeting all criteria were included. 

Discrepancies between reviewers were resolved through discussion or involvement of a third reviewer. Agreement 

was quantified using Cohen’s kappa (κ). 

A PRISMA flow diagram below summarize the selection process is provided below in Figure 1. 

 

Figure 1: Prisma Flowchart 

Data Extraction 

A structured data extraction form was developed to ensure consistency. For each eligible study, the following 

information was extracted: 

• Bibliographic Information: authors, year, publication type 

• Industrial Context: manufacturing domain, machine type, sensor type 

• Dataset Details: source, size, preprocessing steps, class distribution 
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• ML Techniques: algorithm type (SVM, CNN, LSTM, hybrid models, etc.) 

• Feature Engineering: domain-driven features, deep representations, signal transformations 

• Model Evaluation: metrics such as accuracy, F1-score, RMSE, RUL error 

• Deployment Context: cloud, edge, or hybrid computing; real-time feasibility 

• Challenges/Limitations: data imbalance, noise, generalization issues 

• Key Results: improvements vs. baseline, runtime, reliability 

Data extraction was performed independently by two reviewers and cross-verified. 

Quality Assessment 

Quality and risk of bias were evaluated using a modified version of the Joanna Briggs Institute (JBI) checklist and 

ML-specific criteria including: 

1. Clarity of problem formulation 

2. Dataset transparency and reproducibility 

3. Appropriateness of ML model selection 

4. Proper handling of class imbalance 

5. Adequate validation strategy (cross-validation, train-test split) 

6. Reporting of hyperparameters 

7. Availability of code or datasets 

8. Real-world applicability and deployment feasibility 

Each study was graded as high, medium, or low quality. 

Disagreements in scoring were resolved through consensus. 

Data Synthesis 

A narrative synthesis approach was employed due to the heterogeneity of: 

• ML models 

• datasets 

• industrial contexts 

• evaluation metrics 

Studies were grouped according to: 

• ML category (supervised, unsupervised, deep learning, hybrid) 

• PdM task (fault diagnosis, anomaly detection, RUL estimation) 
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• Industrial domain (manufacturing, energy, transport, etc.) 

Where feasible, performance metrics were compared against reported baselines. A meta-analysis was not performed 

due to non-uniform datasets and incompatible metrics across studies. 

Ethical Considerations 

As this study involved only published secondary data, no ethical approval was required. 

RESULTS: 
Study Selection and Characteristics 

The systematic search across five databases initially identified 4123 records. After removing duplicates (n = 783), 

3340 records underwent title and abstract screening. Of these, 2867 were excluded for not meeting the inclusion 

criteria (e.g., unrelated to PdM, no ML implementation, or non-IIoT context). Full-text screening of 473 studies 

resulted in the inclusion of 62 eligible studies. The included studies spanned 2015 – 2025, with a noticeable increase 

in publications from 2018 onwards. Geographically, most studies originated from Asia (41%), followed by Europe 

(35%) and North America (19%). The industrial sectors most frequently studied were manufacturing machinery 

(38%), energy generation and power plants (26%), automotive and transportation (18%), and others, including oil & 

gas and logistics (18%) (19). 

Machine Learning Techniques 

Among the included studies, classical ML models such as Random Forest (RF), Support Vector Machines (SVM), 

Gradient Boosting Machines (GBM), and k-Nearest Neighbors (k-NN) were reported in 28 studies. Deep Learning 

techniques dominated 31 studies, including Convolutional Neural Networks (CNNs), Long Short-Term Memory 

(LSTM) networks, Recurrent Neural Networks (RNNs), and autoencoders. Three studies implemented hybrid ML 

frameworks, combining classical ML with deep learning or signal-processing-based features. Figure 2 illustrates the 

distribution of ML techniques. 

 

 

Figure 2: Distribution of ML Techniques 
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Table below also describes the summary of machine learning techniques in PdM Studies. 

 

Table 1: Summary of Machine Learning Techniques in PdM Studies 

ML Technique No. of 

Studies 

Common Industrial 

Domain 

Typical Input Features Key Performance 

Metrics 

Random Forest 

(RF) 

12 Manufacturing Vibration, Temperature Accuracy 85–92% 

SVM 8 Automotive & 

Energy 

Acoustic, Pressure Accuracy 82–90% 

Gradient Boosting 

(GBM) 

5 Manufacturing Sensor aggregates, 

Statistical 

F1-score 78–88% 

k-NN 3 Logistics & 

Manufacturing 

Multivariate sensor 

readings 

Accuracy 80–86% 

CNN 12 Manufacturing & 

Energy 

Raw vibration/acoustic 

signals 

Accuracy 88–95% 

LSTM/RNN 10 Energy & 

Transportation 

Time-series sensor data RMSE 0.08–0.15, MAE 

0.05–0.12 

Autoencoders 5 Manufacturing Multisensor streams Anomaly detection F1-

score 76–88% 

Hybrid Models 3 Manufacturing & 

Automotive 

Mixed features + DL 

representations 

Accuracy 92–96% 

Datasets and Feature Engineering 

A majority of studies (65%) relied on publicly available benchmark datasets, such as C-MAPSS, PHM 2012, and 

SECOM, while 35% used proprietary industrial datasets. Dataset sizes ranged from 10,000–50,000 samples to over 2 

million readings. Deep learning models frequently used raw sensor inputs, while classical ML relied on engineered 

features (20). 

Table 2: Datasets Used in Included PdM Studies 

Dataset Name Source No. of 

Samples 

Feature Type Preprocessing / Feature 

Engineering 

C-MAPSS NASA 1,000,000+ Multisensor time-

series 

Normalization, sequence 

windowing 

PHM 2012 Public Challenge 50,000 Vibration & Acoustic FFT, Wavelet Transform 

SECOM UCI Repository 16,000 Electrical sensor 

readings 

PCA, Statistical descriptors 
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Proprietary 

Dataset A 

Automotive plant 250,000 Multivariate sensor 

logs 

Signal filtering, domain 

features 

Proprietary 

Dataset B 

Manufacturing 

machinery 

120,000 Temperature, pressure, 

vibration 

FFT + statistical moments 

Proprietary 

Dataset C 

Power plant turbines 2,100,000 Pressure, RPM, 

vibration 

Windowed sequences, 

normalization 

Performance Metrics and Model Evaluation 

Evaluation metrics varied. Classification tasks (fault detection) used accuracy, F1-score, precision, recall. Regression 

tasks (RUL prediction) reported RMSE, MAE, MAPE. Hybrid models consistently outperformed single models. 

Table 3: Model Performance Across Industrial Domains 

Industrial Domain ML Type Task Dataset Key Metric Performance 

Manufacturing CNN Fault Diagnosis C-MAPSS Accuracy 92% 

Manufacturing RF Fault Diagnosis Proprietary A Accuracy 87% 

Energy LSTM RUL Prediction Proprietary C RMSE 0.08 

Automotive SVM Fault Detection PHM 2012 F1-score 83% 

Manufacturing Hybrid (CNN+RF) Fault Diagnosis Proprietary B Accuracy 95% 

Transportation LSTM RUL Prediction PHM 2012 MAE 0.06 

Deployment and Implementation Insights 

Deployment strategies were reported in 24 studies. Edge-device implementation was explored in 11 studies, cloud or 

hybrid in 13 studies. Real-time feasibility and latency were major considerations. 

Table 4: Deployment Strategies for ML-based PdM Models 

ML Model Deployment 

Type 

Hardware Real-Time 

Feasibility 

Challenges 

CNN Cloud GPU Cluster High Latency, data transfer 

LSTM Edge Embedded CPU Medium Memory footprint, 

preprocessing 

RF Edge Microcontroller High Limited complexity, feature 

extraction 

Hybrid 

(CNN+RF) 

Hybrid Cloud + Edge High Integration complexity 

Autoencoder Cloud GPU Server Medium Large dataset requirement 
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DISCUSSION: 
This systematic review synthesizes contemporary advancements in applying machine learning (ML) techniques for 

predictive maintenance (PdM) in Industrial IoT (IIoT) environments, highlighting both the progress achieved and the 

challenges that remain for large-scale industrial adoption. The included studies demonstrate that ML-driven PdM has 

evolved significantly over the past decade, transitioning from traditional statistical forecasting to increasingly 

sophisticated deep learning models capable of capturing complex temporal and multivariate patterns in sensor data. A 

key finding is the prominent use of Random Forests, Support Vector Machines, Convolutional Neural Networks 

(CNNs), and Long Short-Term Memory (LSTM) networks. Deep learning models, particularly CNNs and LSTMs, 

have shown superior performance in handling high-dimensional and sequential IIoT data streams, making them well-

suited for fault diagnosis, anomaly detection, and Remaining Useful Life (RUL) estimation. However, despite their 

performance advantages, these models are seldom deployed in real-world industrial settings due to explainability 

concerns, computational demands, and the need for large labeled datasets. This creates a paradox where advanced 

methods outperform classical techniques in controlled experiments but remain underutilized in operational 

environments. 

Another important observation is the diversity of datasets and evaluation procedures used across studies. Many 

researchers rely heavily on publicly available datasets such as NASA C-MAPSS and the PHM Society challenges, 

which promote benchmarking but limit external validity since these datasets do not always reflect the noise, non-

stationarity, and heterogeneity present in real industrial systems. Conversely, studies that utilize proprietary industrial 

datasets often lack reproducibility because their data cannot be shared. This imbalance underscores a critical gap in 

the field: the need for standardized, open-access IIoT datasets that capture realistic machine behaviors across different 

sectors. Furthermore, the review identifies inconsistencies in model evaluation, such as varied use of metrics 

(accuracy, RMSE, F1-score, AUC, etc.) and different validation strategies. These inconsistencies make cross-study 

comparisons difficult and hinder the establishment of universally accepted benchmarks for PdM performance. 

The findings also highlight the growing interest in hybrid and ensemble learning approaches. Several studies combine 

classical ML with deep learning or integrate multiple deep learning architectures to exploit complementary strengths. 

For example, CNN-LSTM hybrids leverage CNNs for spatial feature extraction and LSTMs for temporal sequence 

modeling, achieving superior performance in vibration analysis and RUL prediction. These hybrid approaches are 

particularly promising for IIoT environments characterized by multimodal sensor data, including acoustic, thermal, 

electrical, and vibration signals. Nonetheless, hybrid models introduce challenges related to system complexity, 

training time, and hyperparameter optimization, which may limit their feasibility in resource-constrained 

environments such as edge devices. Addressing these constraints will require further research into lightweight model 

architectures, knowledge distillation, and edge-native AI algorithms. 

From a practical standpoint, one of the most significant barriers identified is the integration of ML models into existing 

industrial workflows. Many companies lack the infrastructure required to support real-time data ingestion, high-

frequency sensor monitoring, and continuous model retraining. Issues such as missing data, imbalanced fault classes, 

and concept drift further complicate deployment. The review shows that only a minority of studies address these real-

world constraints through techniques like data augmentation, transfer learning, online learning, or active learning. 

This suggests that academic research often focuses on achieving high predictive accuracy rather than solving system-

level challenges critical for industrial implementation. Future work must prioritize adaptive learning mechanisms 

capable of maintaining performance over time despite changing machine conditions and evolving operating 

environments. 

Explainable Artificial Intelligence (XAI) also emerges as a crucial focus area. Industrial stakeholders require 

transparency in PdM decision-making, especially for high-stakes applications involving safety-critical machinery. 

Classical ML models such as decision trees and Random Forests offer inherent interpretability, which partly explains 

their popularity in industry. In contrast, deep learning models, though more accurate, are typically perceived as black 

boxes. Some studies incorporated techniques such as SHAP values, Grad-CAM, and attention mechanisms to improve 

interpretability, but these efforts remain limited. To bridge the gap between academia and industry, future PdM 
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research must embed explainability, uncertainty quantification, and user-friendly diagnostic insights as core 

components of model design rather than optional add-ons. 

Another insight concerns data governance and cybersecurity. As IIoT devices proliferate, the volume of sensor data 

increases exponentially, raising concerns about data integrity, latency, and cyber-attacks. Only a few studies addressed 

secure data transmission, federated learning, or privacy-preserving analytics. These omissions highlight a critical 

vulnerability, as compromised data streams can lead to incorrect predictions, unexpected downtime, or safety 

incidents. Integrating secure communication protocols, blockchain-based audit trails, and decentralized ML paradigms 

will be essential to ensure trustworthy PdM systems. Equally important is the challenge of data labeling. Fault events 

are rare, making supervised learning difficult. This explains the increasing focus on unsupervised and semi-supervised 

techniques—particularly autoencoders and clustering methods—for anomaly detection where labeled samples are 

unavailable. 

Overall, this systematic review demonstrates that ML-driven PdM offers transformative potential for Industry 4.0, 

enabling reduced downtime, optimized maintenance schedules, and extended machine life cycles. However, realizing 

this potential requires overcoming significant methodological, infrastructural, and practical challenges. Future 

research directions should focus on: (1) developing standardized and realistic datasets; (2) advancing interpretable and 

resource-efficient models; (3) incorporating adaptive and online learning strategies; (4) addressing cybersecurity and 

data governance; and (5) enhancing external validity through real-world industrial collaborations. By addressing these 

gaps, the community can accelerate the transition of ML-based PdM from experimental prototypes to fully deployed, 

scalable industrial solutions. 

CONCLUSION: 
This systematic review highlights the growing impact of machine learning techniques on predictive maintenance 

within Industrial IoT ecosystems, demonstrating substantial progress in fault detection, anomaly identification, and 

Remaining Useful Life estimation. Classical ML algorithms continue to provide reliable baselines, while deep learning 

models - particularly CNNs and LSTMs - offer enhanced accuracy by capturing complex spatial–temporal patterns in 

sensor data. The findings underscore the transformative potential of data-driven maintenance strategies in reducing 

operational downtime, minimizing unexpected failures, and improving asset management efficiency across industrial 

sectors. However, despite promising advancements, the widespread deployment of ML-based PdM systems remains 

limited due to issues related to data heterogeneity, lack of generalizable evaluation frameworks, and the gap between 

academic experimentation and real-world industry needs. 

This review also identifies several limitations that hinder current progress. The majority of studies rely on a small set 

of publicly available datasets that do not fully represent the variability and noise inherent in real industrial 

environments. Additionally, inconsistencies in performance reporting, the absence of standardized benchmarking 

metrics, and limited attention to model explainability constrain cross-study comparability and industrial acceptance. 

Future research should focus on developing realistic open-access IIoT datasets, advancing lightweight and 

interpretable models suitable for edge deployment, and implementing adaptive learning techniques that maintain 

performance under dynamic operating conditions. Moreover, integrating cybersecurity measures, privacy-preserving 

analytics, and interoperable architectures will be essential for building trustworthy, scalable PdM solutions. By 

addressing these gaps, future work can accelerate the practical adoption of predictive maintenance and support the 

evolution toward intelligent, resilient Industry 4.0 ecosystems. 
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